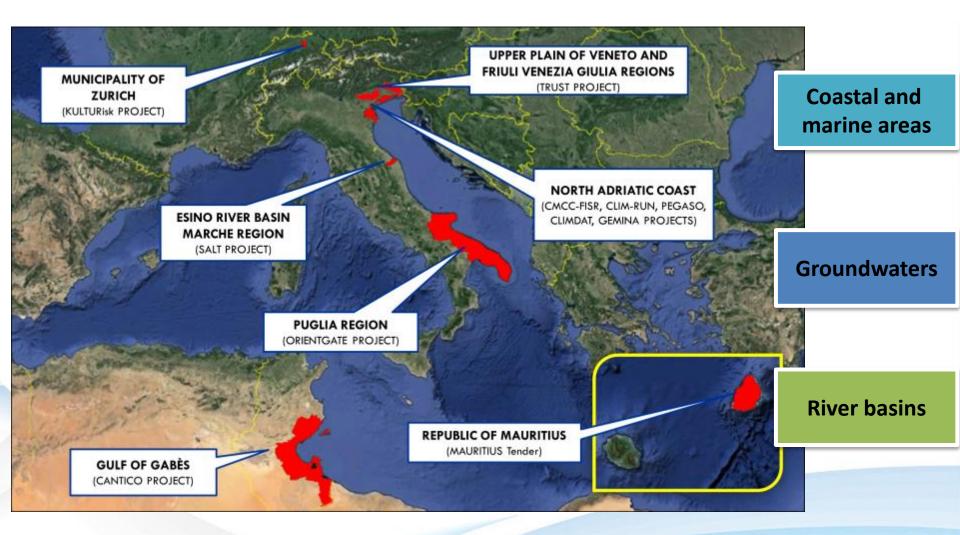
DESYCO: key functionalities for stakeholders across case studies

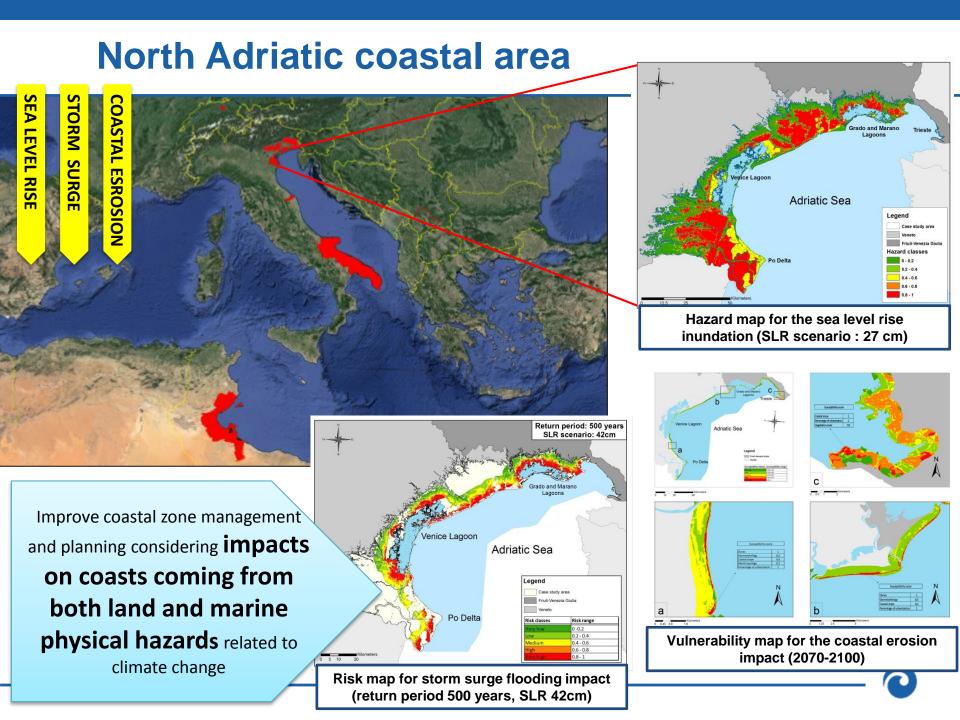
Elisa Furlan Centro Euro-Mediterraneo sui Cambiamenti Climatici Ca' Foscari University

Milan, 4 February 2016

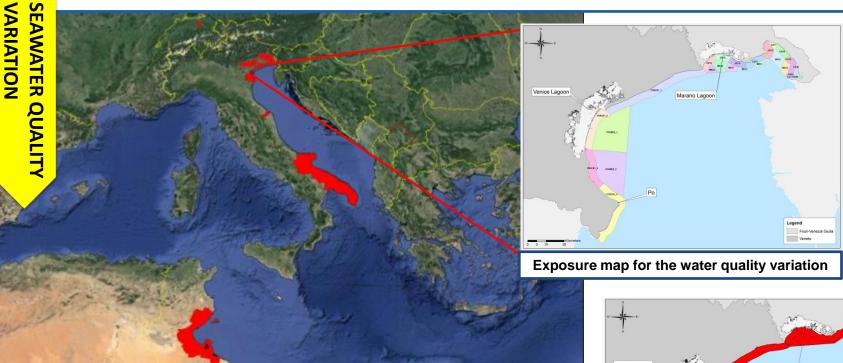


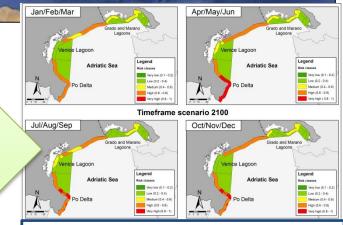
 Overview of case studies highlighting main DESYCO output and their functionalities for SHs.

 Focus on the case study of the Gulf of Gabes, Tunisia.

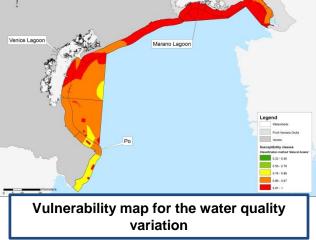

• Cross-cutting conclusion.

Case studies:

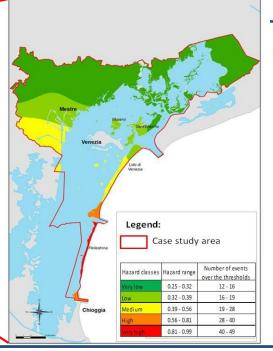

Coastal and marine areas

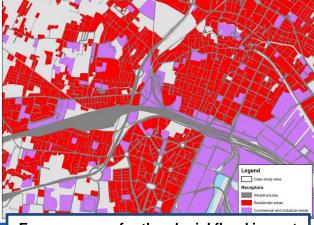


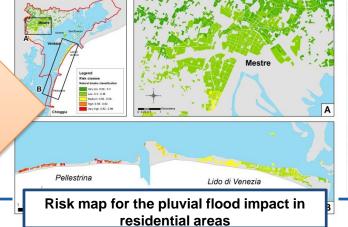
North Adriatic coastal water bodies



Identify measures and policies for maintaning marine ecosystems in a healthy, productive and resilient condition in wiev of climate change


Risk map for the water quality variation (emission scenario A1B, 2100).


Municipality of Venice (Italy)



Hazard map for the pluvial flood impact

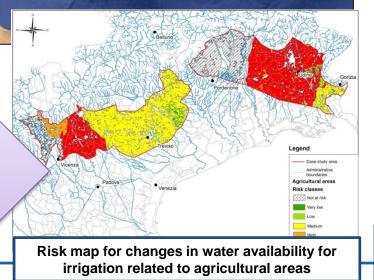
Exposure map for the pluvial flood impact

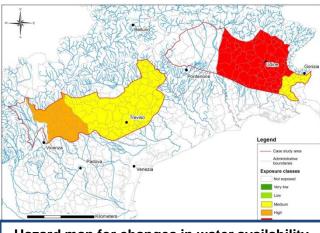
Integrate informations concerning future climate change scenarios in the development of new building regulations and urban plans as well as in the definition of action plan for risk reduction

Groundwaters

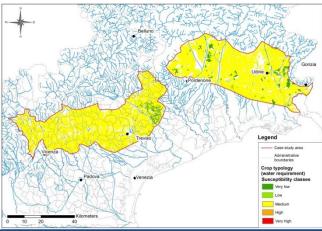
Upper plain of Veneto and Friuli Venezia Giulia regions (Italy)

CHANGES IN NITRATE INFILTRATION


CHANGES

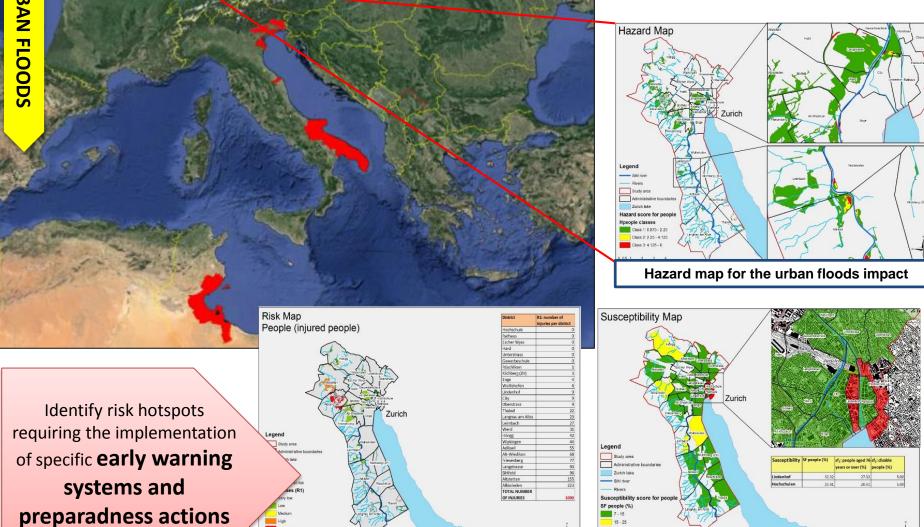

z

WATER


AVAILABILITY

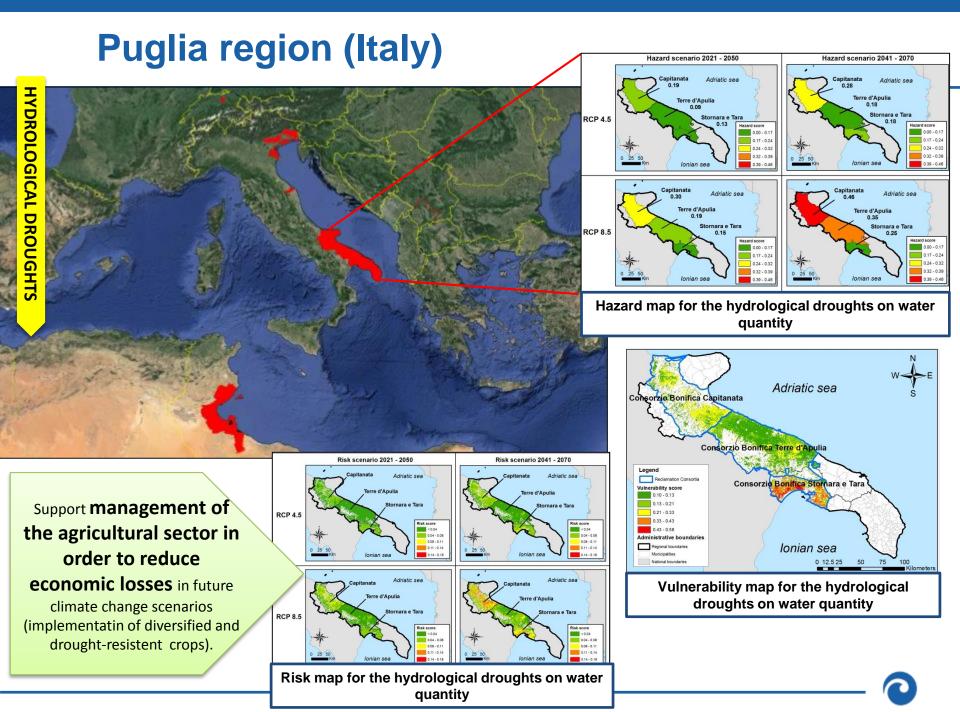
Implement concerted and coordinated climate adaptation actions in order to **improve water resources management and planning**

Hazard map for changes in water availability for irrigation related to agricultural areas


Susceptibility map for changes in water availability for irrigation related to agricultural areas

River basins

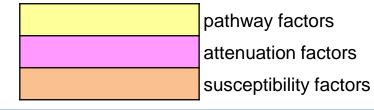
Sihl river, Zurigo (Switzerland)



for disaster risk reduction

Risk map for the urban floods impact related to the receptor 'people'

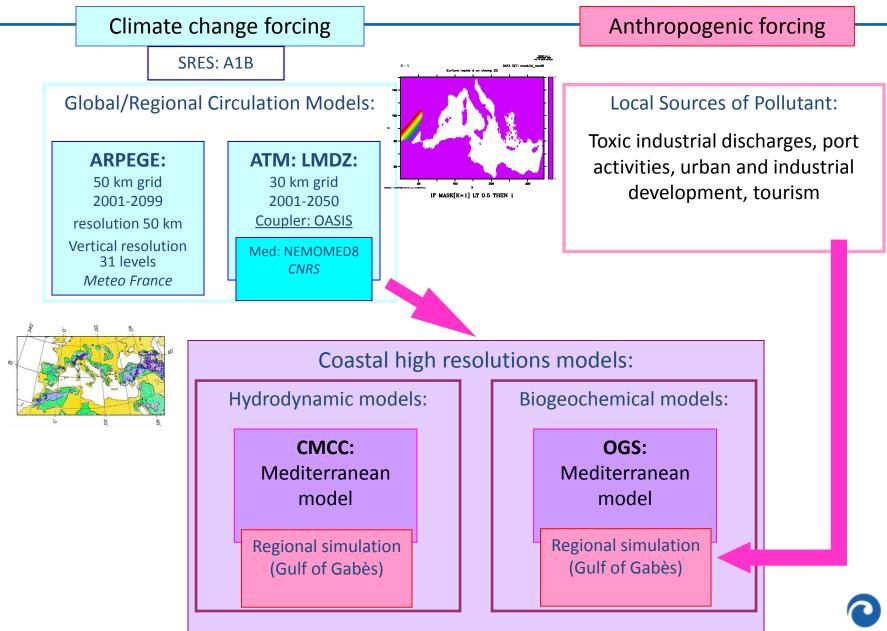
Vulnerability map for the urban floods impact


Regional Risk Assessment addressing the impacts of climate change in the coastal area of the Gulf of Gabes (Tunisia)

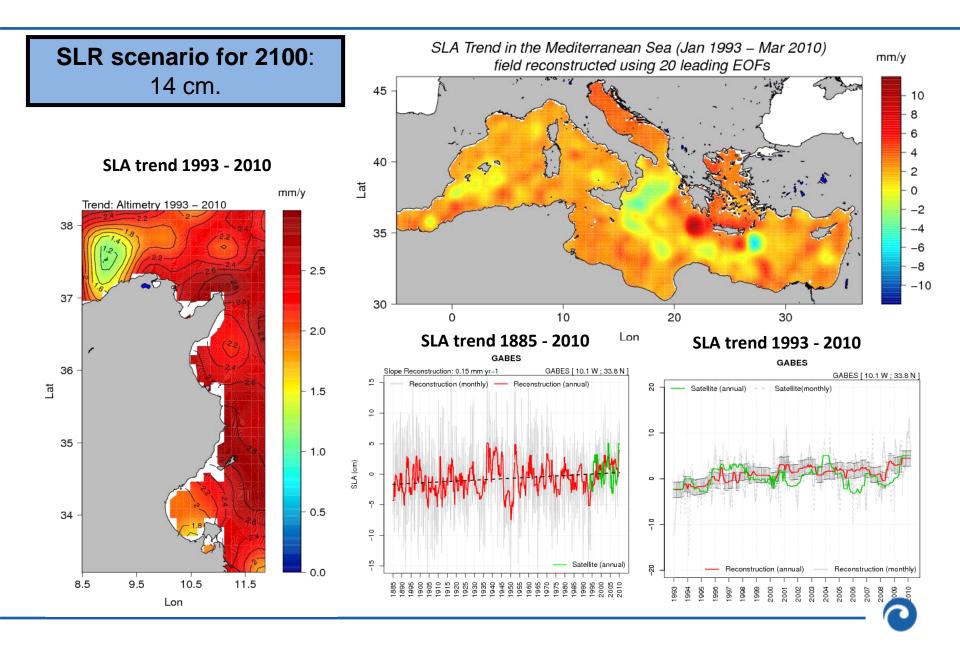
CANTICO – The case study area – Gulf of Gabes

Input data – Vulnerability factors

IMPACTS	BEACHES	WETLANDS	TERRESTRIAL BIOLOGICAL SYSTEMS	URBAN AREAS	AGRICULTURAL AREAS
HYDRODYNAMIC IMPACTS					
SIr inundation	- Elevation	- Elevation	- Elevation	- Elevation	- Elevation
	- Elevation	- Elevation	- Elevation	- Elevation	- Elevation
	- Distance from coastline	- Distance from coastline	- Distance from coastline	- Distance from coastline	- Distance from coastline
Storm Surge	- Artificial and natural protections	- Artificial and natural protections	- Vegetation cover	- Artificial and natural protections	- Artificial and natural protections
	- Vegetation cover	- Vegetation cover	- Coastal slope	- Coastal slope	- Coastal slope
	- Coastal slope	- Wetland extension			

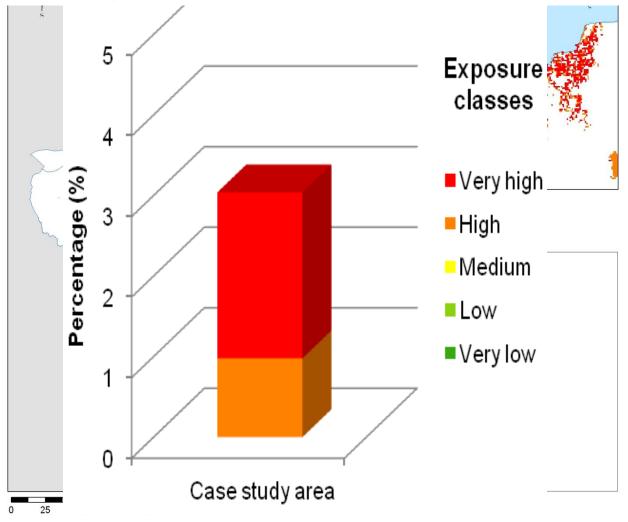

Input data – Vulnerability factors

Factor	Factor Definition				
	Pathway factors				
Elevation (cm)	The height of a geographic location (e.g a pixel of the map) above Mean Sea Level.	DEM (raster).			
Distance from coastline (cm)	The distance of a location (e.g. a pixel of the map) from the coastline.	Coastline (polyline).			
	Attenuation factors				
Artificial and natural protections	Natural or artificial protections (e.g. cliffs) for the defence of the coastline from storm surge and coastal erosion impacts.	Artificial protections (polyline), natural protections (polyline).			
	Susceptibility factors				
Vegetation cover	The typology of vegetation that cover an area (e.g. rangeland, bare soils, forests).	Land use (Raster)			
Wetland extension (km ²)	The extent of wetlands in square kilometres.	Wetland extension (polygon)			
Coastal slope (degrees)	The inclination of the coastal land measured in degrees.	DEM (raster)			

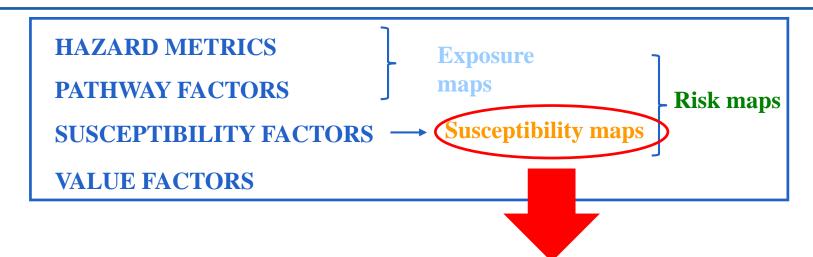

Input data – Definition of receptors

Receptor	Definition
Beaches	This receptor analyzes beaches and the vegetation associated to them. Furthermore it analyzes natural and artificial protections to limitate impacts. coastal areas are important for tourism, recreation and residential development (Voice et al., 2006). Sand grade sediments are generally defined to be those predominantly composed of grains ranging between 0.06 to diameter (Pettijohn, 1975). In the coastal environment, unconsolidated sediments within this grain size range are highly mobile and small enough to be easily eroded and transported by waves, currents and winds that frequently act on most shorelines, in contrast to larger (pebble/cobble/boulder) particles that are only moved by very energetic waves and hardly at all by wind (Sharples, 2006).
Wetland	The wetland receptor includes coastal wetlands along with vegetation, animal life and artificial and natural protections located in wetlands areas. Wetland is an environment at the interface between truly terrestrial ecosystems and aquatic systems making them inherently different from each other yet highly dependent on both. (Mitsch et al., 2009). For the purposes of this assessment the following categories were considered: inland wetlands, salt marshes and intertidal wetlands.
Terrestrial biological systems	This receptor includes animal and plant terrestrial life, their habitats and the ecological functions they provide. Specifically, terrestrial biodiversity encompasses the total variety of life forms including plants, animals and micro-organisms and the processes and ecosystems they form (EPA, 2002).
Urban areas	This receptor includes areas cover by countries, residential areas, commercial zones and industries. It includes areas in which a majority of the people are not directly dependent on natural resource-based occupations (http://www.mhhe.com/biosci/pae/glossaryu.html). Specifically, it includes areas mainly occupied by dwellings and buildings used by administrative/public utilities or collectivities, including their connected areas; areas mainly occupied by industrial activities of transformation and manufacturing, trade, financial activities and services, transport infrastructures for road traffic and rail networks, airport installations, river and sea port installations, including their associated lands and access infrastructures; areas voluntarily created for recreational use (Bossard et al., 2000)
Agricultural areas	This receptor includes areas comprised of arable land, gardens and other perennial plants, meadows and natural pastures (http://regionai.stat.gov.lt/en/savokos.html#Agricultural%20land). It includes: arable land (lands under a rotation system used for annually harvested plants and fallow lands, which are permanently or not irrigated), permanent crops (all surfaces occupied by permanent crops, not under a rotation system), pastures (lands, which are permanently used for fodder production) (Bossard et al., 2000).

Definition of the methodological approach. The model chain



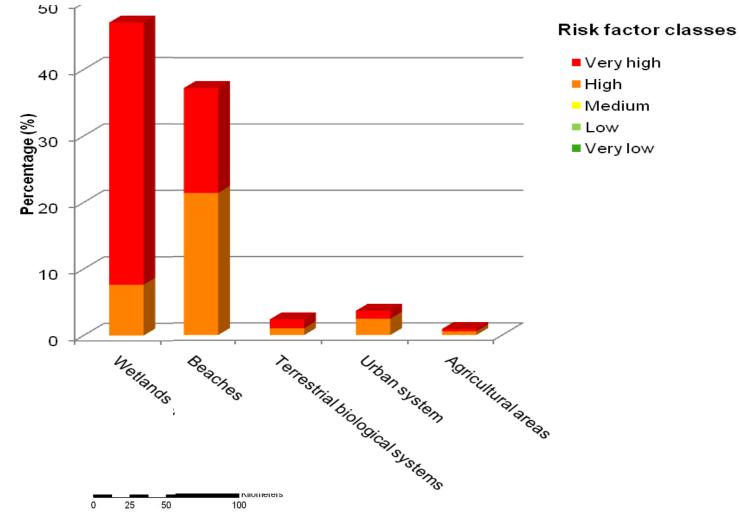
1) Hazard assessment – Sea level rise



2) Exposure assessment – Sea level rise

Distribution of the percentage of surface associated to each exposure class for the case study area for the sea level rise inundation impact.

3) Risk assessment for SLR


A SLR inundation event affect all the receptors in the same way, causing a **permanent loss of receptors' sub-areas** based only on the elevation of the cells.

Each **cell of the territory** was considered to have the same **maximum susceptibility** to SLR impact.

Susceptibility score equal to 1→ homogeneous susceptibility map for the investigated area.

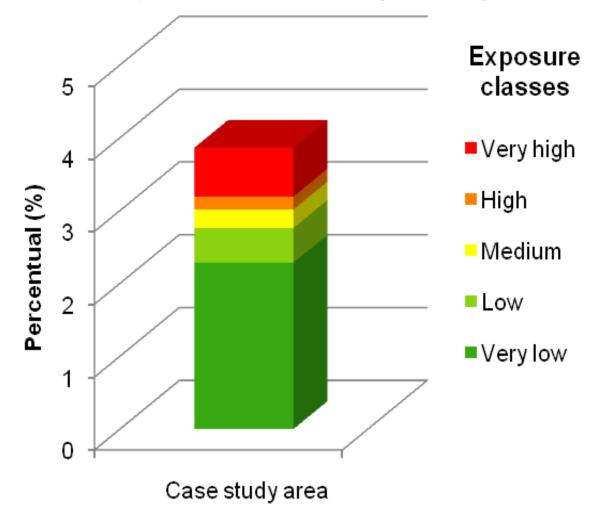
3) Risk assessment – sea-level rise – Wetlands

Distribution of the percentage of surface associated to each risk class for the receptors located in the Gulf of Gabès for the sea level rise inundation impact.

Governorate	Km ²	%
Gabès	9.35	17.63
Medenine	388.67	53.13
Sfax	44.97	28.65
Surface (Km ²) ar	nd percer	ntage of
wetlands at risk t	o Sea Le	vel Rise
inundation imp	oact fo	r the
Governorates ir	n the (Gulf of
Gabès.		

Governorate	Km ²	%						
Gabès	2.91	13.69						
Medenine	11.66	39.27						
Sfax	9.54	68.04						
Surface (Km ²) ar	nd perce	ntage of						
beaches at risk to	o Sea Le	vel Rise						
inundation imp	inundation impact for the							
Governorates in the Gulf of								
Gabès.								

1) Hazard assessment – Storm surge flooding

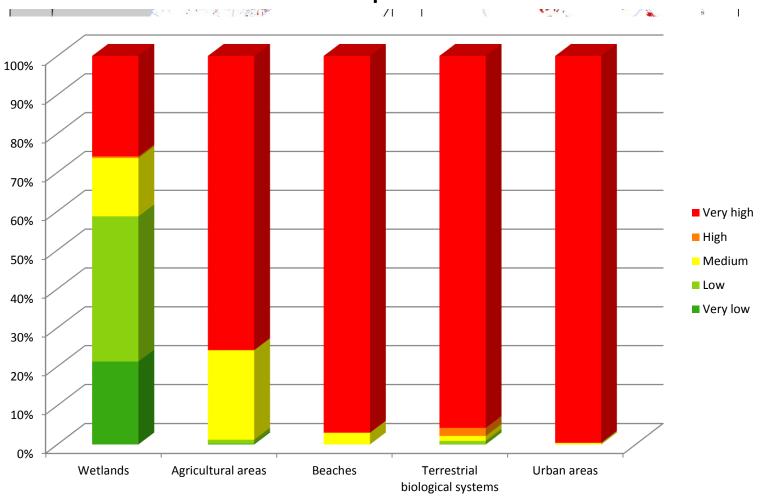

	HAZARD MATRIX STRESSORS							
EXTREME STORMS SURGE	SEA LEVEL RISE	TDE	WAVE	CLIMATE CHANGE IMPACTS				
				HYDRODYNAMI C IMPACTS				
Water level return period	Projected water level	Tidal range	Height Direction	Storm surge flooding				

Height of SS with a return period of 100 years: 173 cm.

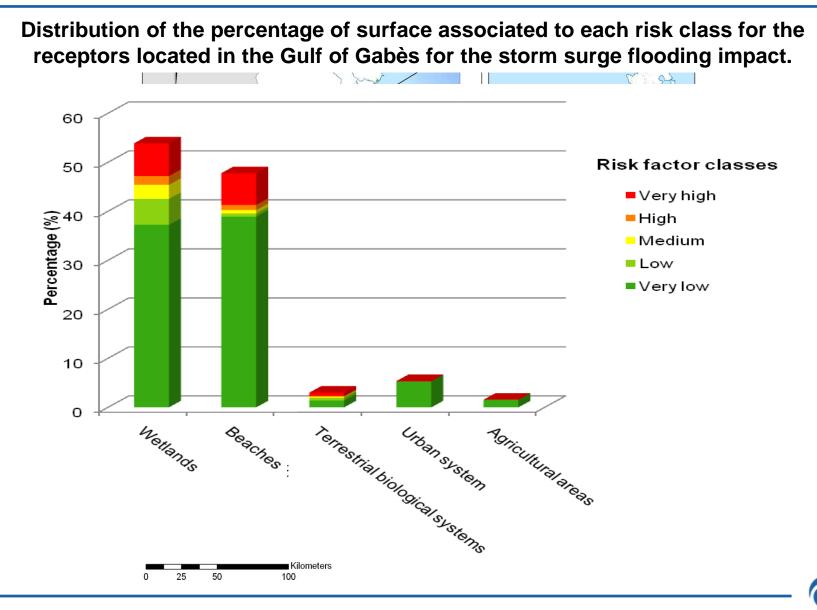
SS scenario for 2100 (includind SLR): 187 cm.

2) Exposure assessment – Storm surge flooding

Distribution of the percentage of surface associated to each exposure class for the case study area for the storm surge flooding impact.


0

3) Susceptibility assessment – Storm surge flooding


Susceptibility			Score
factor	Class	Value	SS
	Rangeland	101	0
Vagatation covor	Bare Soil	102	0,25
Vegetation cover	Jessour	103	0,5
	Forest	104	1
	0 - 1,9	101	1
Coastal along	1,9 - 7,6	102	0,75
Coastal slope	7,6 - 17,1	103	0,5
(degree)	17,1 - 37,3	104	0,25
	37,3 - 84,2	105	0
	0 - 67	101	1
Wetland	67 - 134	102	0,75
extension	134 - 201	103	0,5
(km ²)	201 - 268	104	0,25
	268 - 336	105	0

3) Susceptibility assessment – Storm surge flooding

Distribution of the percentage of surface associated to each susceptibility class for the receptors located in the case study area for the storm surge flooding impact.

4) Risk assessment – Storm surge – Agricultural areas

4) Risk assessment – Storm surge flooding – Statistics

Risk class	Km ²		G		
Very low	1.37				
Low	4.05				
Medium	3.11				
High	1.84				
Very high	3.01				
Very low	225.59				
Low	112.60				
Medium	36.69				
High	22.04				
Very high	41.11				
Very low	4.01				
Low	13.40				
Medium	11.93				
High	8.11				
Very high	18.08				
of wetlands be	elonging		Su		
risk classes for storm			the		
impact and	for the		su		
Low 112.60 Medenine Medium 36.69 High 22.04 Very high 41.11 Very low 4.01 Low 13.40 Medium 11.93 High 8.11					
	Very low Low Medium High Very high Very low Low Medium High Very high Very low Low Medium High Very high of wetlands be risk classes for impact and	Very low 1.37 Low 4.05 Medium 3.11 High 1.84 Very high 3.01 Very low 225.59 Low 112.60 Medium 36.69 High 22.04 Very high 41.11 Very low 4.01 Low 13.40 Medium 11.93 High 8.11 Very high 18.08 f wetlands belonging risk classes for impact and	Very low1.37Low4.05Medium3.11High1.84Very high3.01Very low225.59Low112.60Medium36.69High22.04Very high41.11Very low4.01Low13.40Medium11.93High8.11Very high18.08of wetlands belongingrisk classes for stormimpact and for the		

Governorate	Risk class	Km ²		
	Very low	5.202		
	Low	0.087		
Gabès	Medium	0.024		
	High	0.016		
	Very high	0.004		
	Very low	9.015		
	Low	0.456		
Medenine	Medium	0.627		
	High	0.753		
	Very high	3.839		
	Very low	10.773		
	Low	0.062		
Sfax	Medium	0.007		
	High	0.001		
	Very high	0.089		
Surface (Km ²) o	f beaches belonging to			
the different ris	sk classes fo	r storm		
surge flooding	impact and	for the		
Governorates in	the Gulf of Gab	ès. 👝		

Adaptation to climate change is a complex issue because it implies the **assessment of a wide range of impacts on multiple sectors**, whose vulnerability and adaptive capacity depend un physical, environmental and socio-economic conditionsvarying from region to region.

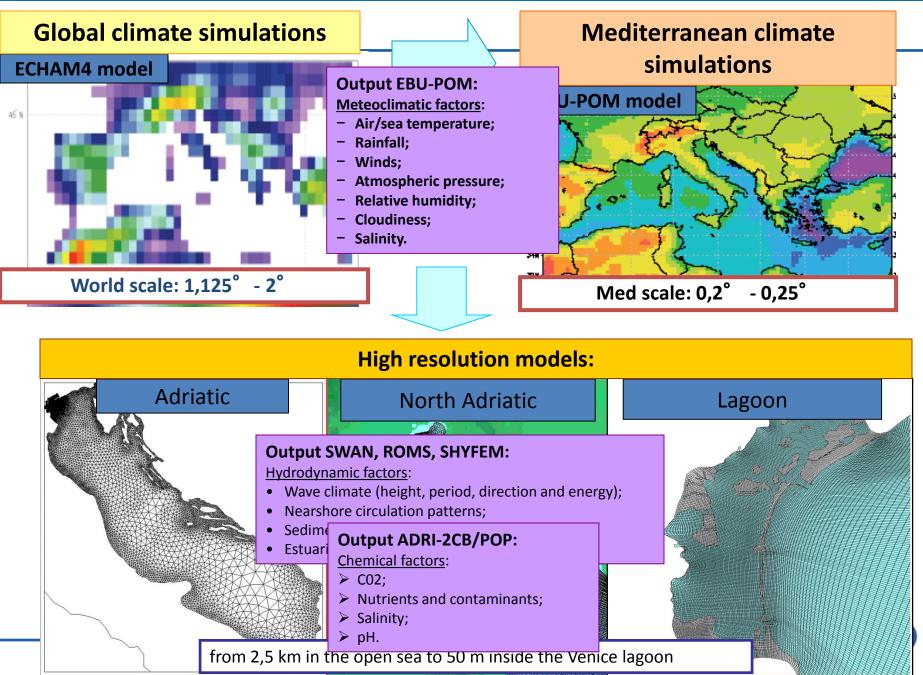
The application of DESYCO in different European and Italian projects has confirmed the **flexibility of the tool** to be applied for a wide range of climate-related problem across the land sea-interface of coastal zones, marine ecosystems, river basin and groundwater.

Its **open configuration** allows the users to in selecting different hazard receptors, input data and scenarios, focusing the analysis on several targets and climate change impacts, according to **specific end-user needs**.

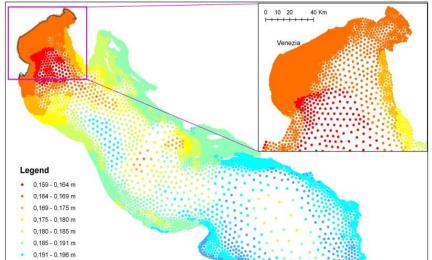
Being developed upon a bottom-up approach involving SHs early in the process, DESYCO can be considered as an **adaptation service provider**, effectively supporting policy makers and planners in the development of regional adaptation strategies.

Thanks for your attention!

Elisa Furlan Elisa.furlan@unive.it

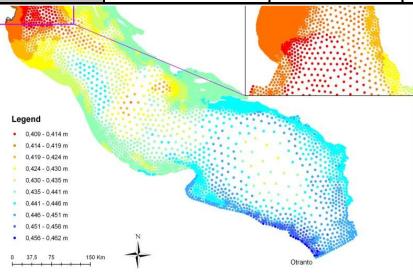

For more information:

Environmental Risk Assessment Unit, Ca' Foscari University, Venice: http://venus.unive.it/eraunit/


Euro-Mediterranean Center on Climate Change (CMCC), RAAS - Risk assessment and adaptation strategies, Venice: www.cmcc.it/it/divisions/raas

1) HAZARD SCENARIO ASSESSMENT FOR SLR

1) HAZARD SCENARIO ASSESSMENT FOR SLR



Low hazard scenario: based on SHYFEM MODEL (emission scenario A1B for the year 2100). Boundary condition: 20 cm SLR at Otranto.

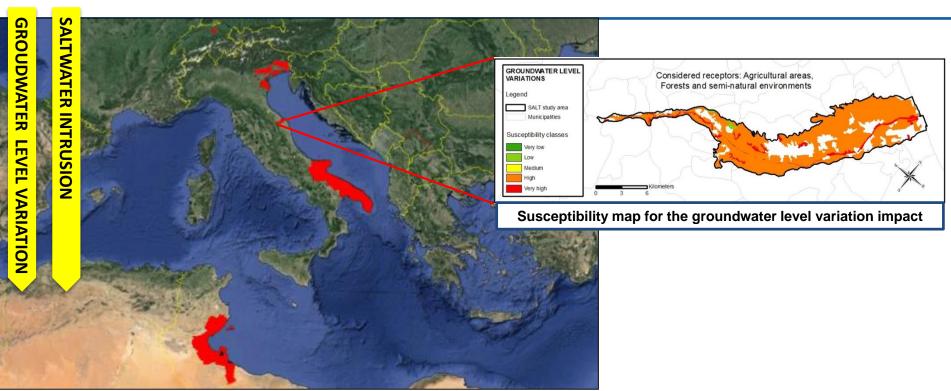
Low SLR scenario:

17 cm along the North Adriatic shoreline

Scenario	Scenario Minimum value (cm)		Maximum value (cm)	Range (cm)	Standard deviation (cm)
Low Sea Level Rise	16,73	16,84	16,97	0,25	± 0.04
High Sea Level Rise	41,73	41,82	41,96	0,23	± 0.04

SHYFEM MODEL (emission scenario A1B for the year 2100). Boundary condition: 45 cm SLR at Otranto.

High SLR scenario:


42 cm along the North Adriatic shoreline.

1) HAZARD SCENARIO ASSESSMENT FOR STORM SURGE

		RETURN PERIOD									
_	height (cm)	10 years	20 years	30 years	40 years	50 years	60 years	70 years	80 years	90 years	100 years
	100	0,9999546	1	1	1	1	1	1	1	1	1
	101	0,9999546	1	1	1	1	1	1	1	1	1
	102	0,9999546	1	1	1	1	1	1	1	1	1
	103	0,9999546	1	1	1	1	1	1	1	1	1
	104	0,9999546	1	1	Es	timation	of the o	occurrer	nce prob	bability	1
	105	0,9999546	1	1		nging fr			•	-	1
	106	0,9999546	1	1				•		-	1
	107	0,9999546	1	1		etween 1					1
	108	0,9999546	1	1	Si	ep of 10) years)	of at lea	ast one	event	1
	109	0,9999546	1	1	(of a certa	ain heig	ht betwe	en 100	and	1
	110	0,9999546	1	1		of a certain height between 100 and 140 cm.		1			
	111	0,9999546	1	1		1					1
	112	0,9999284	1	1	1	1	1	1	1	1	1
	113	0,9998448	1	1	1	1	1	1	1	1	1
	114	0,9997068	0,9999999	1	1	1	1	1	1	1	1
	115	0,9994986	0,9999998	1	1	1	1	1	1	1	1
	116	0,9992003	0,9999994	1	1	1	1	1	1	1	1
	117	0,9987833	0,9999985	1	1	1	1	1	1	1	1
	118	0,9982031	0,9999968	1	1	1	1	1	1	1	1
	119	0,9973909	0,9999932	1	1	1	1	1	1	1	1
	120	0,9962418	0,9999859	1	1	1	1	1	1	1	1
	121	0,9946006	0,9999709	0,9999998	1	1	1	1	1	1	1
	122	0,992246	0,9999399	0,9999995	1	1	1	1	1	1	1
	123	0,9888755	0,9998763	0,9999986	1	1	1	1	1	1	1
	124	0,9840971	0,9997471	0,999996	0,9999999	1	1	1	1	1	1
_	125	0,9774352	0,9994908	0,9999885	0,9999997	1	1	1	1	1	1
	126	0,9683584	0,9989988	0,9999683	0,999999	1	1	1	1	1	1

-3 4

Esino river basin – March region (Italy)

bla