Modelling crop vulnerability and risk by applying the Decision Support System for Agro technology Transfer-Cropping System Model (DSSAT-CSM)

Valentina Mereu

CMCC Foundation Impacts on Agriculture, Forests and Ecosystem Services – IAFES Division ClimaSouth Regional Workshop on Methods and Tools for Vulnerability Assessment Milan, 5th February 2016

Climate change Vulnerability of agricultural sector

Tools for vulnerability assessment in agriculture DSSAT-CSM

Europe Italy Sub-Saharan Africa Nigeria

Evidences from AR5 (IPCC, 2013)

Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia.

- atmosphere and ocean have warmed
- sea level has risen
- the amounts of snow and ice have diminished
- concentrations of greenhouse gases have increased
- extreme events have increased

Human influence on the climate system is clear. This evidence for human influence has grown since AR4.

It is extremely likely (> 95%) that human influence has been the dominant cause of the observed warming since the mid-20th century.

http://www.ipcc.ch/

Future Projections from AR5

		2046–2065		2081–2100	
	Scenario	Mean	<i>Likely</i> range ^c	Mean	<i>Likely</i> range ^c
	RCP2.6 1.0 0.4 to 1.6	0.4 to 1.6	1.0	0.3 to 1.7	
Global Mean Surface	RCP4.5	1.4	0.9 to 2.0	1.8	1.1 to 2.6
Temperature Change (°C)ª	RCP6.0	1.3	0.8 to 1.8	2.2	1.4 to 3.1
	RCP8.5	2.0	1.4 to 2.6	3.7	2.6 to 4.8

http://www.ipcc.ch/

Vulnerability – Hazard - Exposure

Climate changes expose people, societies, economic sectors and ecosystems to risk. **Risk is the potential for consequences** when something of value is at stake and the outcome is uncertain, recognizing the diversity of values.

Risks from climate change impacts arise from the interaction between hazard (caused by an event or trend related to climate change), vulnerability (susceptibility to harm) and exposure (people, assets or ecosystems at risk).

Climate change and agriculture

Climate change is a significant risk for agricultural production

Even under optimistic scenarios for climate mitigation action, agricultural areas are likely to face significant **increases in temperature** in the coming decades, in addition **to changes in precipitation**, **cloud cover**, and **frequency and duration of extreme heat**, **drought**, **and flood events**.

Agricultural systems

CC without adaptation will have a negative impact on the production of the main crops (wheat, rice and corn), especially in temperate regions, as a consequence of a temperature increase of 2°C or more, above late-20th-century levels, although individual locations may benefit

http://www.ipcc.ch/

Adaptation/mitigation in agriculture

Global food production needs to be increased because of:

- Climate change impacts on agriculture (IPCC, 2007, 2013)
- World population growth (FAO, 2009; UN, 2013)
- Food security Food availability Food access Food utilization (FAO, 1996)

Climate-Smart Agriculture

Agriculture that sustainably:

- increases productivity and incomes
- increases resilience to climate change (adaptation)
- reduces and/or removes GHGs (mitigation)
- achieve national food security and development goals

We need **tools and methos** to estimate crop production depending on weather and climate, with the aim of:

- Identify the most vulnerable areas to extreme events and climate change
- Evaluate the most effective management techniques in terms of crop productivity and sustainable use of resources
- Identify adaptation and mitigation strategies specific for each region

Risk and vulnerability analysis

Land suitability analysis

 Characterize climate, soil and relevant land conditions (optimal and limiting factors) for the cultivation of a particular crop/cultivar

LAND CAPABILITY

SUITABILITY

 Assess suitability, or the ability of the land to meet the crop requirements, in terms of water requirements, temperature, nutrients, workability, etc.

Flow chart of winter wheat land suitability model

Soil suitability

LAND CAPABILITY/ **SUITABILITY**

Baseline land suitability of winter wheat

Rainfed

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Moderate Dry

Suitable

LAND CAPABILITY/ SUITABILITY

Land suitability for olive in Euro-Mediterranean Basin

Spatial scales of application

LAND CAPABILITY/

SUITABILITY

SIMETAW#

Simulation of Evapotranspiration of Applied Water (Snyder et al., 2004; Mancosu et al., 2015)

- user friendly
- daily soil water balance
- irrigation requirement

Agricultural water demand planning for the California Water Plan

ETaw

Evapotranspiration of Applied Water

Evapotranspiration of water that is diverted from streams and canals or pumped from ground water that is applied and contributes to seasonal crop evapotranspiration

SIMETAW# MODEL: INPUT DATA

climate data + soil information + crop & irrigation management

Irrigation Requirements by crop

- Observed or projected climate data
- Soil water holding characteristics
- Crop management

• Irrigation management

- solar radiation (MJ m⁻² day⁻¹)
- wind speed (m s⁻¹)
- dew point temperature (°C)
- precipitation (mm)
- max & min temperature (°C)
- planting and ending date
- hectares planted
- maximum rooting depths
- percentage shading of the ground
- presence of cover crops
- rain-fed or irrigated conditions
 (gravity, sprinkler, micro-sprinkler, drip)
- irrigation frequency during the initial growth
- percentage of the full irrigation requirement
- system distribution uniformity

CALCULATIONS

- ✓ Kc corrections (near-bare soil evaporation, ETo, and % shading)
- **FLUXES Content CO**₂ **concentration** levels)
 - ✓ ETc and ETa
- WATER ✓ Daily soil water balance
 BALANCE ✓ Net irrigation application for event
 - ✓ Numbers of irrigations
- YIELD ✓ Stress coefficient (Ks) and yield reduction relative to full irrigation (deficit and rainfed conditions)

2085 (2071-2100)

[✓] Rice

WATER BALANCE MODELS

Climate change impacts on ETaw (irrigated) & Yield reduction (rainfed)

- ✓ Greater values for SMHI-RCM than SOMD
- ✓ NO uniform trend
- Kenya (Maize)
 highest irrigation
 requirements and
 yield reduction with
 both DS techniques

✓ No impacts in Ghana & Togo

(Mancosu, 2014)

Agricultural modeling

Issues for Agriculture in the 21st Century

- Food security
- Climate related risks (climate change and variability)
- Increased demands for agricultural products
- Increased pressures on natural resources, as water
- Rapid changes in technology
- Information needed for decision making
- Gap between information needed and that created by traditional agronomic research
- High and increasing costs of field experimentation
- Need for integration of knowledge

AGRICULTURE

Spatial and Temporal Issues

The agricultural system is a **complex** system that includes many interactions between biotic and abiotic factors

Some of these factors can be modified by farmer interactions and intervention, while others are controlled by nature

Modelling agricultural systems

- A model is a mathematical representation of a real world system
- The use of models is very common in many disciplines, but the use of models in agricultural sciences traditionally has not been very common

Crop Simulation Models

integrate the current state-of-the art scientific knowledge from many different disciplines

(crop physiology, plant breeding, agronomy, agrometeorology, soil physics, soil chemistry, soil fertility, plant pathology, entomology, economics, ...)

- have been developed for various purposes:

irrigation management, pest management, precision agriculture, yield forecasting, crop rotation analysis, nutrient management, land use planning, climate change assessment, economic risk,...

Crop simulation models

Calculate or predict *crop growth and yield* as a function of:

- soil conditions
- weather conditions
- crop management
- genetics

Source: World Food Production: Biophysical Factors of Agricultural Production, 1992.

Crop simulation models

Applications

- Diagnose problems (Yield Gap Analysis)
- Precision agriculture
 - -Diagnose factors causing yield variations
 - -Prescribe spatially variable management
- Irrigation management
- Soil fertility management
- Plant breeding and Genotype * Environment interactions

What if...?

- Yield prediction for crop management
- Adaptive management using climate forecasts
- Climate variability
- Climate change
- Soil carbon sequestration
- Targeting aid (Early Warning)

DSSAT-CSM

CROPSYST

STICS

APSIM

SIRIUS

WOFOST

Available at: http://dssat.net/

About • Crop Models & Applications • Tools • Data • Training • News & Blog • Downloads Support & Contact • E

Later and	Selector					
	E Crops	Carl Experiments 🔀 Dids 🔲 Outputs				
1 N N 1	Barley	+ # Experiment	Description	Modified	^	
rop Management Data	- 👌 Maize	7 IUAF9901.MZX	IUAF9900MZ MAIZE KN, 2 POP X 2 N RATES	5:09:04, Fri, 4 Sep 2009		
1112	Pearl Millet	B RUAF9902.MZX	NAF9902 EXAMPLES OF PEST DAMAGE	5:09:24, Fri, 4 Sep 2009		
1	Grain Scrohum	10 SIA29501 MZX	1995 SIA EXPERIMENT ZARAGOSA SPAIN	5:09:38. Fri 4 Sep 2009		
Graphical Daplay	Wheat	11 SIAZ9601.MZX	1996 SIA EXPERIMENT, ZARAGOSA, SPAIN	5:09:54, Fri, 4 Sep 2009		
	E Legumes	✓ 12 UFGA8201.MZX	NIT X IRR, GAINESVILLE 2Nº31	5:13:10, Fn, 4 Sep 2009		
1 and 1	Root Crops				×.	
Soit Data	E Vegetables				Preview	
(Jan	🕀 🚺 Fiber	Treatments			0.00	
	(i) i forages	CIT RANFED LOW MIROG	EN			
DOCAT	First Crops	[2] RAINFED HIGH MITROG	EN			
DSSAL	V4.6 arous	[3] RRGATED LOW NITRO	GEN .			
	El Applications	[4] RRIGATED HIGH NITRO	IGEN			
Latest Version: 4.	6.1.0 (Sep 2015) Free	e of charge!	HUGEN	Bog	lost DSSAT v4 6	
	Spatial	*EXP. DETAILS: UPGAS: 01	MZ NIT X IRR, GAINESVILLE 2N-31	Requ	1651 D33A1 V4.0	
12.00	E - S Data	+CENEDAL				
Seasonal Analysis	1			Finally	/ - DSSAT v4.6 is here. Request to do	
Sessonal Analysis	19 Weather	GAROATE			· · · · · · · · · · · · · · · · · · ·	
Sessonal Analysis	D Weather	STANTY + M THE US	Manan T / Thats T W		uura eenu tedaud	

DSSAT

- Decision Support System for Agrotechnology Transfer (DSSAT) is a software application program that comprises crop simulation models for over 42 crops (as of v4.6).
- DSSAT is supported by data base management programs for soil, weather, and crop management and experimental data, and by utilities and application programs.
- □ The crop simulation models in DSSAT simulate growth, development and yield as a function of the soil-plantatmosphere dynamics

Source: Palosuo et al., 2011

DSSAT Cropping System Model

0

•

CERES

- Maize
- Wheat
- Sorghum
- Rice
- Barley
- Millet
- [Other crops]
 - Potato
 - Sweetcorn
 - Sugarcane
 - Cassava
 - [Sunflower]
 - [Forages]

- CROPGRO (Legumes)
 - Soybean
 - Peanut

•

- Common bean
- Faba bean
- Chickpea
- Cowpea
- Velvet bean
- CROPGRO (Other)
 - Cotton
 - Tomato
 - Bell Pepper
 - Cabbage
 - Green bean

DSSAT-CSM

(Jones et al., 2003; Hoogenboom et al., 2010).
DSSAT

Cropping System Model (CSM) – Genetic Coefficients

Species parameters and functions

Defines the response of a crop to environmental conditions, including temperature, solar radiation, CO₂ and photoperiod, as well as plant composition and other functions and parameters

Ecotype coefficients

Defines coefficients for groups of cultivars that show similar behavior and response to environmental conditions.

Cultivar coefficients

Cultivar and variety specific coefficients, such as photothermal days to flowering & maturity, sensitivity to photoperiod, seed size, etc.

DSSAT

Minimum Data Set	Crop data for model evaluation		
 Level 1 - Operate crop simulation models Level 2 - Evaluate model performance Calibrate, estimate parameters Level 3 - Develop models (Maximum) 	 Historical observed crop data: data of emergence data of flowering data of physiological maturity canopy height at maturity yield of appropriate economic unit (e.g. kernels) in dry weight terms 		
Crop data for model operation	 harvest product individual dry weight (e.g. weight per grain, weight per tuber) damage level of pest infestation Initial conditions: previous crop/crop residue Planting/sowing date and depth; row spacing, plant population 		
•Cultivar name and type			
Initial conditions: previous crop/crop residue			
•Planting/sowing date and depth; row spacing, plant population			
 Irrigation and water management, dates, methods and amounts or depths 	•Irrigation and water management, dates, methods and amounts or depths		
•Fertilization types, quantities and date	•Fertilization types, quantities and date		
•Tillage type and date	•Tillage type and date		
•Harvest schedule	•Harvest schedule		

Methodology – model parameterization

Model implementation with observed field data

Model calibration for local variety/ Model evaluation with independent data set

Methodology - impact, adaptation, and mitigation

Assessment and prediction of

AGRO-CLIMATIC Indexes

- Length of growing cycle
- Prec during the growing season
- ETc

CROP YIELD and QUALITY

Yield and product components

WATER, CARBON and NITROGEN balances

- Irrigation requirements
- Fertilization management
- Carbon sequestration

Crop models can be applied at different scales

Mereu et al., 2010; 2014 Gallo et al., 2014

DSSAT applications:

For science For consultancy

Local scale National scale

ITALY and EUROPE Wheat, Maize

NIGERIA Maize, Sorghum, Millet, Rice, Cassava

SUB-SAHARIAN AFRICA Maize, Sorghum, Millet

For each experimental site, 27 climate change scenarios (statistical downscaling):

- 3 GCMs: HadCM3, ECHAM5 and NCAR
- 3 versions: low, middle and high
- 3 future periods: 2025, 2050, 2075

Evaluation of *"direct"* and *"indirect"* effect of increased CO₂ concentration

"indirect" effect of increased CO₂ concentration on climate conditions

"*direct*" effect of increased CO₂ concentration on plant photosynthesis and transpiration

Climate change impact assessment on anthesis (dap)

Changes in wheat yield (%) without CO₂ direct effect

Changes in wheat yield (%) with CO₂ direct effect

Crop simulation models - The DSSAT 4.5 - CSM

From local to national/regional scale

1. Input data collection, analysis and processing to fit crop model requirements

2. Model parameterization for each crop/variety, considering the ordinary crop management, for each area considered

3. Scripts for iterative model simulation, to obtain output in each grid point (Trabucco *et al.* - linking DSSAT-CSM with GIS)

1. Input data collection, analysis and processing to fit crop model requirements

Data processing to fit crop models requirements

(Gallo et al., 2014 in preparation)

2. Model parameterization for each crop/variety, considering the ordinary crop management, for each area considered

Results

Model evaluation for crop types

3. Develop a tool for iterative model simulation, to obtain output in each grid point

Tool written in R to integrate DSSAT with large scale environmental datasets **GIS-DSSAT Spatial platform** Data structure/value verification & **Input - Daily Climate** flagging for inconsistencies **NETCDF time series: Output - Spatial crop** modelling (NETCDF): Yield Irrigation Water use eff. Nutrient cycles Input - soil/agronomic characterization raster: DSSAT **Data Validation**

(Trabucco A., Gallo A., Mereu V., Spano D., 2014)

Fully integrated with climate model netcdf geo-datasets and up-to-date large scale socio-environmental geo-datasets

Input - soil/agronomic characterization raster:

Fully integrated with climate model netcdf geodatasets and up-to-date large scale socioenvironmental geodatasets

Input - Daily Climate NETCDF time series:

Input - soil/agronomic characterization raster:

Fully integrated with climate model netcdf geodatasets and up-to-date large scale socioenvironmental geodatasets

Input - Daily Climate NETCDF time series:

Input - soil/agronomic characterization raster:

Data structure/value verification & flagging for inconsistencies

Fully integrated with climate model netcdf geodatasets and up-to-date large scale socioenvironmental geodatasets

Input - Daily Climate NETCDF time series:

Input - soil/agronomic characterization raster:

Fully integrated with climate model netcdf geodatasets and up-to-date large scale socioenvironmental geodatasets

Input - Daily Climate NETCDF time series:

Input - soil/agronomic characterization raster:

Data structure/value verification & flagging for inconsistencies

Soil Types - WISE Dataset

Fully integrated with climate model netcdf geodatasets and up-to-date large scale socioenvironmental geodatasets

Input - Daily Climate NETCDF time series:

Input - soil/agronomic characterization raster:

Data structure/value verification & flagging for inconsistencies

Treatment Types - Agronomic Practices

Fully integrated with climate model netcdf geodatasets and up-to-date large scale socioenvironmental geodatasets

Input - Daily Climate NETCDF time series:

Input - soil/agronomic characterization raster:

- Various data check are applied to verify for data error and masking
- Outputs of crop growth performances (e.g. Yield, growing season), water use/needs (and efficiency) of maize and wheat have been produced (Euro-Med 14km and Italy at 8km)

Yield at harvest maturity

Time: 1980

Changes in maturity period for maize (days after planting)

2020

Changes in maize yield (%)

RCM: COSMO-CLM RCP4.5 (14 km)

(Mereu et al., 2014 in preparation)

Durum wheat yield changes (%)

Gallo et al. 2014

14 km vs 8 km

2050 RCP 4.5

Average maize yield (kg/ha)

(Mereu et al., 2014 in preparation)

Average grain yield (t ha⁻¹)

Durum wheat								
Area	Observed	Simulated (8 km)	Simulated (14 km)					
North	5.5	5.3	4.6					
Centre-Italy (Tyrrhenian side)	4.9	5.6	4.8					
Centre-Italy (Adriatic side)	4.8	5.1	3.8					
South-Peninsular	3.8	4.8	4.0					
Sicily	3.8	3.4	2.7					
Sardinia	5.2	4.5	4.2					
Common wheat								
Area	Observed	Simulated (8 km)	Simulated (14 km)					
North	6.0	4.5	4.1					
Centre	5.2	4.4	4.4					
South-Peninsular	3.1	3.1	3.0					
Maize								
Area	Observed	Simulated (8 km)	Simulated (14 km)					
North	11.1	8.0	7.2					

Annual average maturity date (dap)

Annual average grain				
viold (t ha^{-1})				

	Area					
Period	North		Centre		South-Islands	
	8 km	14 km	8 km	14 km	8 km	14 km
1990	160**	159**	174***	160***	157***	139***
2020	147***	141***	160***	139***	145***	122***
2050	135***	141***	146***	139***	134***	122***
2080	131***	124***	142***	122***	129***	110***
	Area					
Period	North		Centre		South-Islands	
	8 km	14 km	8 km	14 km	8 km	14 km
1990	4.9***	4.2***	10.6ns	10.7ns	10.7***	10.5***
2020	9.1***	8.0***	10.5***	9.1***	9.8***	7.6***
2050	8.2***	7.0***	9.8***	7.8***	9.0***	6.6***
2080	7.8***	6.6***	9.4***	7.3***	8.2***	6.1***

Student's t-test **P*≤0.05; ***P*≤0.01; ****P*≤0.001; ns=not significant

Average maize yield (kg/ha)

- Bias correction of GCMs/RCMs
- Resolution of dynamical/statistical downscaling
- Considering a wide range of GCMs and scenarios

Agriculture in Sub-Saharan Africa

- Agriculture drives the economy of many Sub-Saharan African countries
- It is the main economic activity in terms of employment share
- **Smallholder farmers**
- □ Rain-fed agriculture (98%) used for subsistence
- ❑ Most vulnerable continent to climate change/variability
- Low adaptive capacity of the continent due to increasing in population, persistent poverty, and other social factors
- Substantial decrease of crop yields due to increasing temperatures, changed precipitation patterns, and more frequent droughts

Average simulated changes in maturity (days) respect to baseline (1981-2010) with two downscaling methods in each case study area.

Сгор	SOMD 2025	SOMD 2055	SOMD 2085	SMHI-RCM 2025	SMHI-RCM 2055	SMHI-RCM 2085
Sorghum (Burkina Faso)	-3	-7	-10	-4	-7	-11
Sorghum (Sudan)	-2	-5	-8	-3	-7	-9
Rice (Burkina Faso)	-7	-10	-14	-10	-19	-19
Maize (Malawi)	-8	-16	-23	-6	-16	-26
Maize (Ghana)	-3	Shorten	ing o <u>f</u> the g	rowing-season	-10	-16
Maize (Kenya)	-6	-10	-15	-9	-17	-27
Maize (Togo)	-3	-8	-12	-5	-10	-15
Millet (Burkina Faso)	-4	-10	-15	-6	-11	-15
Cassava (Ghana)	-11	-7	+20	-30	-44	-30
Cassava (Togo)	-9	0	+48	-21	-23	-12

Average changes in crop yield (%) for a selection of crops and sites – simulated using the site based DSSAT model (transient CO_2)

- DSSAT predicts a decrease in crop yield, especially for 2055 and 2085.
- The largest yield declines are projected for maize (with up to -55% in Ghana and Togo).
- A positive trend of yield projections in Kenya (due to increased precipitation) even if the increase in crop yield is high in % terms, but small in absolute terms.

(Mereu et al., in submission)

Climate change impacts on crop maturity period (dap)

Climate change impacts on crop yield (kg/ha) (CO₂ according to RCP 8.5) - rainfed

- Higher yield reductions projected with statistically downscaled data
- Higher uncertainties in the projections with dynamically downscaled data

Climate risk analysis in Nigeria

Climatic Change DOI 10.1007/s10584-015-1428-9

Impact of climate change on staple food crop production in Nigeria

Valentina Mereu^{1,2} • Gianluca Carboni³ • Andrea Gallo¹ • Raffaello Cervigni⁴ • Donatella Spano^{1,2}

Received: 12 October 2014 / Accepted: 28 April 2015 © Springer Science+Business Media Dordrecht 2015

Abstract Climate change impact on the agricultural sector is expected to be significant and extensive in Sub-Saharan Africa, where projected increase in temperature and changes in precipitation patterns could determine sensible reductions in crop yields and concerns for food security achievement. This study presents a multi-model approach to analysing climate change

Climate risk analysis in Nigeria

Nigeria can be considered a representative case study of the WA, having all the range of climatic and vegetation types of this area (Adejuwon 2004): from the wettest Agro-Ecological Zone (AEZ), the Humid Forest, to the semi-arid zone of Sahel Savanna

□ Agriculture accounts for about 40% of GDP and 70% of employment in Nigeria.

□ Crop production is largely (> 90%) driven by the rainfall level across the Country

□ Stagnant yields in the face of growing population cause increasing dependency on food imports, particularly rice.

Model	Res. (°lat x °lon)	Institution	Emission scenario
HadCM3	2.5°x 3.75°	UKMO	A1B
CGCM_2.3.2	2.8°x 2.8°	MRI	A1B
CNRM_CM3	2.8°x 2.8°	CNRM	A1B
CSIRO-Mk3.5	1.9°x 1.9°	CSIRO	A1B
CCSM3	1.4°x 1.4°	NCAR	A1B
MIROC3.2	1.125°x 1.125°	CCSR	A1B
GFDL_cm2.1	2.5°x 2°	GFDC	A1B
ECHAM5	1.875°x 1.875°	MPI	A1B
FGOALS	2.8125°x 2.8125°	IAP	A1B
CMCC-MED	0.75°x 0.75°	CMCC	A1B

Sorghum, Maize, Millet, Rice, Cassava

80% of total Nigerian agricultural production

Impacts at Country level

(Mereu et al., 2015)

(Mereu et al., 2015)

Risk assessment

- The specific yield risk for each crop in any of the AEZs (Rsc) was calculated by defining a threshold yield value (Yt) calculated for each crop considering the 30-year baseline period (1976–2005).
- The risk occurs when the crop yield is equal or inferior to one standard deviation below the 30-year mean yield, which is the threshold value (Yt). The Rsc was calculated considering the relation

$$Rs_c = \frac{n}{N} * 100$$

where **n** is the number of times when simulated yield is below the specific Yt and N is the total number of simulations.

 Moreover, an integrated risk index (IR) was calculated for each AEZ, by combining the risk for each crop (Rsc), weighted by the specific harvested area (Hac) in each AEZ:

$$IR = \frac{\sum_{1}^{c} Rs_c * Ha_c}{\sum_{1}^{c} Ha_c}$$

Risk assessment

2050

2.8

11.8

25.6

22.7

22.6

13.1

Regret analysis for adaptation options in rain-fed areas

Mini-max adaptation option, which minimizes the maximum regret across climate models.

 \mathbf{C}

Food Security

Food security defined as existing:

"when all people at all times have access to sufficient, safe, nutritious food to maintain a healthy and active life" (1996 WHO summit)

Impact of Climate variability on Food Security: Nigeria

Impact of Climate variability on Food Security: Nigeria

CONCLUSIONS

Climate data

- Uncertainties
- Climate models
- Scenarios
- Downscaling techniques
- Resolution

....

Agricultural models

- Indicators

....

- Land evaluation tecniques
- Statistical models
- Process based models

Economic evaluations

- Socio-economic factors
- Technology
-

Thanks

valentina.mereu@cmcc.it

